Variational Autoencoder-Based Dimensionality Reduction for High-Dimensional Small-Sample Data Classification

Author:

Mahmud Mohammad Sultan12,Huang Joshua Zhexue12,Fu Xianghua12

Affiliation:

1. National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, P. R. China

2. Big Data Institute, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, P. R. China

Abstract

Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains, especially in computational biology. It is also known as a high-dimensional small-sample-size (HDSSS) problem. Various dimensionality reduction methods have been developed, but they are not potent with the small-sample-sized high-dimensional datasets and suffer from overfitting and high-variance gradients. To overcome the pitfalls of sample size and dimensionality, this study employed variational autoencoder (VAE), which is a dynamic framework for unsupervised learning in recent years. The objective of this study is to investigate a reliable classification model for high-dimensional and small-sample-sized datasets with minimal error. Moreover, it evaluated the strength of different architectures of VAE on the HDSSS datasets. In the experiment, six genomic microarray datasets from Kent Ridge Biomedical Dataset Repository were selected, and several choices of dimensions (features) were applied for data preprocessing. Also, to evaluate the classification accuracy and to find a stable and suitable classifier, nine state-of-the-art classifiers that have been successful for classification tasks in high-dimensional data settings were selected. The experimental results demonstrate that the VAE can provide superior performance compared to traditional methods such as PCA, fastICA, FA, NMF, and LDA in terms of accuracy and AUROC.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3