Aerial Image Denoising Using a Best-So-Far ABC-based Adaptive Filter Method

Author:

Banharnsakun Anan1

Affiliation:

1. Computational Intelligence Research Laboratory (CIRLab), Department of Computer Engineering, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand

Abstract

Nowadays, digital images play an increasingly important role in helping to explain phenomena and to attract people’s attention through various types of media rather than the use of text. However, the quality of digital images may be degraded due to noise that has occurred either during their recording or their transmission via a network. Therefore, removal of image noise, which is known as “image denoising”, is one of the primary required tasks in digital image processing. Various methods in earlier studies have been developed and proposed to remove the noise found in images. For example, the use of metric filters to eliminate noise has received much attention from researchers in recent literature. However, the convergence speed when searching for the optimal filter coefficient of these proposed algorithms is quite low. Previous research in the past few years has found that biologically inspired approaches are among the more promising metaheuristic methods used to find optimal solutions. In this work, an image denoising approach based on the best-so-far (BSF) ABC algorithm combined with an adaptive filter is proposed to enhance the performance of searching for the optimal filter coefficient in the denoising process. Experimental results indicate that the denoising of images employing the proposed BSF ABC technique yields good quality and the ability to remove noise while preventing the features of the image from being lost in the denoising process. The denoised image quality obtained by the proposed method achieves a 20% increase compared with other recently developed techniques in the field of biologically inspired approaches.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3