ASSESSMENT OF PARAMETER UNCERTAINTY IN RIGID MUSCULOSKELETAL SIMULATION USING A PROBABILISTIC APPROACH

Author:

Dao Tien Tuan1,Tho Marie-Christine Ho Ba2

Affiliation:

1. Université de Technologie de Compiègne, CNRS UMR 7338, Biomécanique et Bioingénierie, BP 20529, 60205 Compiègne cedex, France

2. Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338, Biomechanics and Bioengineering, BP 20529, 60205 Compiègne cedex, France

Abstract

Experimental investigation coupled with numerical simulations is commonly used for solving multi-physical problems. In the field of biomechanics, in which the aim is to understand the mechanics of living system, the main difficulties are to provide experimental data reflecting the multi-physical behavior of the system of interest. These experimental data are used as input data for numerical simulations to quantify output responses through physical and/or biological laws expressed by constitutive mathematical equations. However, uncertainties on the experimentally available data exist from factors such as human variability and differences in protocols parameters and techniques. Thus, the true values of these data could never be experimentally measured. The objective of this study was to develop a modeling workflow to assess and account for the parameter uncertainty in rigid musculoskeletal simulation. A generic musculoskeletal model was used. Data uncertainties of the right thigh mass, physiological cross-sectional area (pCSA) and muscle tension coefficient of the rectus femoris were accounted to estimate their effect on the joint moment and muscle force computing, respectively. A guideline was developed to fuse data from multiple sources into a sample variation space leading to establish input data distribution. Uncertainty propagation was performed using Monte Carlo and most probable point methods. A high degree of sensitivity of 0.98 was noted for the effect of thigh mass uncertainty on the hip joint moment using inverse dynamics method. A strong deviation of rectus femoris muscle force (around 260 N) was found under effect of pCSA and muscle tension coefficient on the force estimation using static optimization method. Accounting parameter uncertainty into rigid musculoskeletal simulation plays an essential role in the evaluation of the confidence in the model outputs. Thus, simulation outcome may be computed and represented in a more reliable manner with a global range of plausible values.

Publisher

World Scientific Pub Co Pte Lt

Subject

Orthopedics and Sports Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3