A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations

Author:

Dao Tien Tuan1ORCID,Tho Marie-Christine Ho Ba1ORCID

Affiliation:

1. Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60 319 Compiègne, France

Abstract

Finite elasticity theory has been commonly used to model skeletal muscle. A very large range of heterogeneous constitutive laws has been proposed. In this review, the most widely used continuum models of skeletal muscles were synthetized and discussed. Trends and limitations of these laws were highlighted to propose new recommendations for future researches. A systematic review process was performed using two reliable search engines as PubMed and ScienceDirect. 40 representative studies (13 passive muscle materials and 27 active muscle materials) were included into this review. Note that exclusion criteria include tendon models, analytical models, 1D geometrical models, supplement papers, and indexed conference papers. Trends of current skeletal muscle modeling relate to 3D accurate muscle representation, parameter identification in passive muscle modeling, and the integration of coupled biophysical phenomena. Parameter identification for active materials, assumed fiber distribution, data assumption, and model validation are current drawbacks. New recommendations deal with the incorporation of multimodal data derived from medical imaging, the integration of more biophysical phenomena, and model reproducibility. Accounting for data uncertainty in skeletal muscle modeling will be also a challenging issue. This review provides, for the first time, a holistic view of current continuum models of skeletal muscles to identify potential gaps of current models according to the physiology of skeletal muscle. This opens new avenues for improving skeletal muscle modeling in the framework of in silico medicine.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3