Affiliation:
1. Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Abstract
Balanced colorings of networks classify robust synchrony patterns — those that are defined by subspaces that are flow-invariant for all admissible ODEs. In symmetric networks, the obvious balanced colorings are orbit colorings, where colors correspond to orbits of a subgroup of the symmetry group. All other balanced colorings are said to be exotic. We analyze balanced colorings for two closely related types of network encountered in applications: trained Wilson networks, which occur in models of binocular rivalry, and opinion networks, which occur in models of decision making. We give two examples of exotic colorings which apply to both types of network, and prove that Wilson networks with at most two learned patterns have no exotic colorings. We discuss in general terms how exotic colorings affect the existence and stability of branches for local bifurcations of the corresponding model ODEs, both to equilibria and to periodic states.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献