SYMMETRY AND SYNCHRONY IN COUPLED CELL NETWORKS 2: GROUP NETWORKS

Author:

ANTONELI FERNANDO1,STEWART IAN2

Affiliation:

1. Department of Applied Mathematics, University of São Paulo, São Paulo SP 05508-090, Brazil

2. Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Abstract

This paper continues the study of patterns of synchrony (equivalently, balanced colorings or flow-invariant subspaces) in symmetric coupled cell networks, and their relation to fixed-point spaces of subgroups of the symmetry group. Let Γ be a permutation group acting on the set of cells. We define the group network [Formula: see text], whose architecture is entirely determined by the group orbits of Γ. We prove that if Γ has the "balanced extension property" then every balanced coloring of [Formula: see text] is a fixed-point coloring relative to the automorphism group of the group network. This theorem applies in particular when Γ is cyclic or dihedral, acting on cells as the symmetries of a regular polygon, and in these cases the automorphism group is Γ itself. In general, however, the automorphism group may be larger than Γ. Several examples of this phenomenon are discussed, including the finite simple group of order 168 in its permutation representation of degree 7. More dramatically, for some choices of Γ there exist balanced colorings of [Formula: see text] that are not fixed-point colorings. For example, there exists an exotic balanced 2-coloring when Γ is the symmetry group of the two-dimensional square lattice. This coloring is doubly periodic, and its reduction modulo 8 leads to a finite group with similar properties. Although these patterns do not arise from fixed-point spaces, we provide a group-theoretic explanation of their balance property in terms of a sublattice of index two.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3