Affiliation:
1. School of Electronic and Information Engineering, Southwest University, Chongqing 400715, P. R. China
2. College of Artificial Intelligence, Southwest University, Chongqing 400715, P. R. China
Abstract
Memristor, as a typical nonlinear element, is able to produce chaotic signals in chaotic systems easily. Chaotic systems have potential applications in secure communications, information encryption, and other fields. Therefore, it is of importance to generate abundant dynamic behaviors in a single chaotic system. In this paper, a novel memristor-based chaotic system without equilibrium points is proposed. One of the essential features is the absence of symmetry in this system, which increases the complexity of the new system. Then, the nonlinear dynamic behaviors of the system are analyzed in terms of chaos diagrams, bifurcation diagrams, Poincaré maps, Lyapunov exponent spectra, the sum of Lyapunov exponents, phase portraits, 0–1 test, recurrence analysis and instantaneous phase. The results of the sum of Lyapunov exponents show that the given system is a quasi-Hamiltonian system with certain initial conditions (IC) and parameters. Next, other critical phenomena, such as hidden multi-scroll attractors, abundant coexistence characteristics, are found characterized through basins of attraction and others. Especially, it reveals some rare phenomena in other systems that multiple hidden hyperchaotic attractors coexist. Finally, the circuit implementation based on Micro Control Unit (MCU) confirms theoretical analysis and the numerical simulation.
Funder
the National Key R&D Program of China
the National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献