Multistable dynamics and attractors self-reproducing in a new hyperchaotic complex Lü system

Author:

Gu Yujuan1ORCID,Li Guodong12ORCID,Xu Xiangliang13ORCID,Song Xiaoming1ORCID,Wu Si1ORCID

Affiliation:

1. School of Mathematics and Computing Science, Guilin University of Electronic Technology 1 , Guilin 541004, China

2. Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Center for Applied Mathematics of Guangxi (GUET), Guilin University of Electronic Technology 2 , Guilin 541004, China

3. School of Information and Communication Engineering, University of Electronic Science and Technology of China 3 , Chengdu 611731, China

Abstract

Multistable dynamics analysis of complex chaotic systems is an important problem in the field of chaotic communication security. In this paper, a new hyperchaotic complex Lü system is proposed and its basic dynamics are analyzed. Owing to the introduction of complex variables, the new system has some structurally distinctive attractors, such as flower-shaped and airfoil-shaped attractors. In addition, the evolution process of the limit cycle is also investigated. Next, the multistable coexistence behavior of the system is researched by the method of attraction basins, and the coexistence behavior of two types of hyperchaotic attractors and one type of chaotic and periodic attractors of the system are analyzed. The coexisting hyperchaotic attractors also show flower and airfoil shapes, and four types of coexistence flower-shaped attractors with different structures are perfectly explored. Moreover, the variation of coexistence attractors in the plane and space with parameters is discussed. Then, by introducing a specific piecewise function determined by a two-element method into the new high-dimensional system, the self-reproduction of the attractor can be realized to generate the multistability, and the general steps of attractors self-reproducing in the higher dimensional system are given. Finally, the circuit design of the new system is implemented, which lays a foundation for the application of complex chaotic systems.

Funder

Natural Science Foundation of Guangxi Province

Guilin University of Electronic Technology

Innovation Project of Guangxi Graduate Education

The Key Laboratory of Data Analysis and Computation in Universities in Guangxi Autonomous Region

Guangxi Center for Applied Mathematics

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3