Lightweight Memristive Neural Network for Gas Classification Based on Heterogeneous Strategy

Author:

Sun Fan1,Li Jie1,Xiao He2,Duan Shukai1,Hu Xiaofang1

Affiliation:

1. College of Artificial Intelligence, Southwest University, Beibei, Chongqing 400715, P. R. China

2. College of Engineering and Mathematical Science, University of Western Australia, Perth, WA 6009, Australia

Abstract

The memristive neuromorphic computing system (MNCS) can complete related calculations with lower power consumption and higher speed, which has attracted widespread attention. However, due to the limitations of memristor and circuit, the realization of MNCS faces many challenges. In this paper, we propose a heterogeneous deployment strategy for the MNCS and construct a lightweight heterogeneous memristive gas classification neural network (LHM-GSNN) based on the electronic nose (e-nose) application. In addition, the model parameters are quantified by clustering strategy to adapt to the nonideal characteristics of memristor. The experimental results show that the complex structure in the model is visibly simplified, and the number of parameters is correspondingly reduced using the heterogeneous deployment strategy. Furthermore, we also analyze the power consumption of the LHM-GSNN model deployed to the MNCS. This work may provide new solutions for constructing and implementing the MNCS.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3