Characterizing the Dynamics of the Watt Governor System Under Harmonic Perturbation and Gaussian Noise

Author:

Rosa Lucas A. S.1,Prebianca Flavio1,Hoff Anderson1,Manchein Cesar1,Albuquerque Holokx A.1ORCID

Affiliation:

1. Physics Department, Universidade Do Estado de Santa Catarina, Joinville, SC 89219-710, Brazil

Abstract

We investigate the disturbance on the dynamics of a Watt governor system model due to the addition of a harmonic perturbation and a Gaussian noise, by analyzing the numerical results using two distinct methods for the nonlinear dynamics characterization: (i) the well-known Lyapunov spectrum, and (ii) the 0-1 test for chaos. The results clearly show that for tiny harmonic perturbations only the smallest stable periodic structures (SPSs) immersed in chaotic domains are destroyed, whereas for intermediate harmonic perturbation amplitudes there is the emergence of quasiperiodic motion, with the existence of typical Arnold tongues and, the consequent distortion of the SPSs embedded in the chaotic region. For large enough harmonic perturbations, the SPSs immersed in chaotic domains are suppressed and the dynamics becomes essentially chaotic. Regarding the noise perturbations, it is able to suppress periodic motion even if tiny noise intensities are considered, as analyzed by a periodic attractor subject to different noise intensities. The threshold of noise amplitude for chaos generation in periodic structures is reported by both methods. Additionally, we investigate the robustness of the 0-1 test for chaos characterization in both noiseless and noise cases, and for the first time, we compare the Lyapunov exponents and 0-1 test methods in the parameter-planes. Our findings are generic due to their remarkable agreement with results previously reported for dynamical systems in other contexts.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo á Pesquisa e Inovação do Estado de Santa Catarina

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3