THE STRUCTURE OF INFINITE PERIODIC AND CHAOTIC HUB CASCADES IN PHASE DIAGRAMS OF SIMPLE AUTONOMOUS FLOWS

Author:

GALLAS JASON A. C.12

Affiliation:

1. Rechnergestützte Physik der Werkstoffe, ETH Hönggerberg HIF E12, Schafmattstrasse, CH-8093 Zurich, Switzerland

2. Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil

Abstract

This manuscript reports numerical investigations about the relative abundance and structure of chaotic phases in autonomous dissipative flows, i.e. in continuous-time dynamical systems described by sets of ordinary differential equations. In the first half, we consider flows containing "periodicity hubs", which are remarkable points responsible for organizing the dynamics regularly over wide parameter regions around them. We describe isolated hubs found in two forms of Rössler's equations and in Chua's circuit, as well as surprising infinite hub cascades that we found in a polynomial chemical flow with a cubic nonlinearity. Hub cascades converge orderly to accumulation points lying on specific parameter paths. In sharp contrast with familiar phenomena associated with unstable orbits, hubs and infinite hub cascades always involve stable periodic and chaotic orbits which are, therefore, directly measurable in experiments. In the last part, we consider flows having no hubs but unusual phase diagrams: a cubic polynomial model containing T-points and wide regions of dense chaos, a nonpolynomial model of the Belousov–Zhabotinsky reaction and the Hindmarsh–Rose model of neuronal bursting, both having chaotic phases with "fountains of chaos". The chaotic regions for the flows discussed here are different from what is known for discrete-time maps. This forcefully shows that knowledge about phase diagrams is quite fragmentary and that much work is still needed to classify and to understand them.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3