Affiliation:
1. School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China
Abstract
In this paper, the chaotic dynamics of composition operators on the space of real-valued continuous functions is investigated. It is proved that the hypercyclicity, topologically mixing property, Devaney chaos, frequent hypercyclicity and the specification property of the composition operator are equivalent to each other and are stronger than dense distributional chaos. Moreover, the composition operator [Formula: see text] exhibits dense Li–Yorke chaos if and only if it is densely distributionally chaotic, if and only if the symbol [Formula: see text] admits no fixed points. Finally, the long-time behaviors of the composition operator with affine symbol are classified in detail.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献