Abstract
In this article, subspace-recurrent operators are presented and it is showed that the set of subspace-transitive operators is a strict subset of the set of subspace-recurrent operators. We demonstrate that despite subspace-transitive operators and subspace-hypercyclic operators, subspace-recurrent operators exist on finite dimensional spaces. We establish that operators that have a dense set of periodic points are subspace-recurrent. Especially, if $T$ is an invertible chaotic or an invertible subspace-chaotic operator, then $T^{n}$, $T^{-n}$ and $\lambda T$ are subspace-recurrent for any positive integer $n$ and any scalar $\lambda$ with absolute value $1$. Also, we state a subspace-recurrence criterion.
Publisher
Tamkang Journal of Mathematics
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献