Nonlinear Phenomena in Axially Moving Beams with Speed-Dependent Tension and Tension-Dependent Speed

Author:

Chen Ling1,Tang You-Qi1ORCID,Liu Shuang1,Zhou Yuan1,Liu Xing-Guang1

Affiliation:

1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China

Abstract

This paper investigates some nonlinear dynamical behaviors about domains of attraction, bifurcations, and chaos in an axially accelerating viscoelastic beam under a time-dependent tension and a time-dependent speed. The axial speed and the axial tension are coupled to each other on the basis of a harmonic variation over constant initial values. The transverse motion of the moving beam is governed by nonlinear integro-partial-differential equations with the rheological model of the Kelvin–Voigt energy dissipation mechanism, in which the material derivative is applied to the viscoelastic constitutive relation. The fourth-order Galerkin truncation is employed to transform the governing equation to a set of nonlinear ordinary differential equations. The nonlinear phenomena of the system are numerically determined by applying the fourth-order Runge–Kutta algorithm. The tristable and bistable domains of attraction on the stable steady state solution with a three-to-one internal resonance are analyzed emphatically by means of the fourth-order Galerkin truncation and the differential quadrature method, respectively. The system parameters on the bifurcation diagrams and the maximum Lyapunov exponent diagram are demonstrated by some numerical results of the displacement and speed of the moving beam. Furthermore, chaotic motion is identified in the forms of time histories, phase-plane portraits, fast Fourier transforms, and Poincaré sections.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3