Approximate Equivalence of Higher-Order Feedback and Its Application in Chaotic Systems

Author:

Gao Yikai1,Li Chunbiao2ORCID,Moroz Irene3,Fu Haiyan4,Lei Tengfei4

Affiliation:

1. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

2. School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

3. Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

4. Collaborative Innovation Center of Memristive, Computing Application (CICMCA), Qilu Institute of Technology, Jinan 250200, P. R. China

Abstract

Based on the feature of piecewise linear (PWL) functions, a nonlinear feedback of a higher-order system can be transformed to an approximately equivalent PWL function so as to ease system implementation in engineering. As an example, a cubic feedback term can be approximately equivalently transformed to be a PWL function. Since the PWL function can be expressed by many simple functions such as signum function and absolute-valued function, the cubic term can be approximately equivalently replaced with these functions. Consequently, the method of approximate equivalence is employed in the JCS-08-13-2022 (JCS) chaotic system for simple circuit design and implementation. In this approach, the widely used multipliers are avoided and the circuits become more economical and also more robust. In this paper, the cubic Chua’s resistor is equivalently approximately replaced by a PWL function. To show the effectiveness of the approximate equivalence, numerical simulations are demonstrated and verified by circuit implementation.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplified chaotic oscillators with two-dimensional offset boosting;The European Physical Journal Plus;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3