Extreme Multistability and Complex Dynamics of a Memristor-Based Chaotic System

Author:

Chang Hui1,Li Yuxia1ORCID,Chen Guanrong2,Yuan Fang1

Affiliation:

1. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, P. R. China

2. Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China

Abstract

A memristor with coexisting pinched hysteresis loops and twin local activity domains is presented and analyzed, with an emulator being designed and applied to the classic Chua’s circuit to replace the diode. The memristive system is modeled with four coupled first-order autonomous differential equations, which has three equilibria determined by three static equilibria of the memristor but not controlled by the system parameters. The complex dynamics of the system are analyzed by using compound coexisting bifurcation diagrams, Lyapunov exponent spectra and phase portraits, including point attractors, limit cycles, symmetrical chaotic attractors and their blasting, extreme multistability, state-switching without parameter, and transient chaos. Of particular surprise is that the extreme multistability of the system is hidden and symmetrically distributed. It is found that the existence of transient chaos in the specified parameter domain is determined by using bifurcation diagrams within different time durations and Lyapunov exponents with chaotic sequences. Finally, the symmetrical chaotic attractor and the system blasting are verified by digital signal processing experiments, which are consistent with the numerical analysis.

Funder

the Natural Science Foundation of China

the Major Basic Research Projects of Shandong Natural Science Foundation

the Hong Kong Research Grants Council under the GRF Grant CityU

the Taishan Scholar Project of Shandong Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3