Population Dynamics with Nonlinear Delayed Carrying Capacity

Author:

Yukalov V. I.12,Yukalova E. P.13,Sornette D.14

Affiliation:

1. Department of Management, Technology and Economics, ETH Zürich, Swiss Federal Institute of Technology, Zürich CH-8092, Switzerland

2. Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia

3. Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna 141980, Russia

4. Swiss Finance Institute, c/o University of Geneva, 40 blvd. Du Pont d'Arve, CH 1211 Geneva 4, Switzerland

Abstract

We consider a class of evolution equations describing the population dynamics in the presence of a carrying capacity depending on the population with delay. In an earlier work, we presented an exhaustive classification of the logistic equation where the carrying capacity is linearly dependent on the population with a time delay, which we refer to as the "linear delayed carrying capacity" model. Here, we generalize it to the case of a nonlinear delayed carrying capacity. The nonlinear functional form of the carrying capacity characterizes the delayed feedback of the evolving population on the capacity of their surrounding by either creating additional means for survival or destroying the available resources. The previously studied linear approximation for the capacity assumed weak feedback, while the nonlinear form is applicable to arbitrarily strong feedback. The nonlinearity essentially changes the behavior of solutions to the evolution equation, as compared to the linear case. All admissible dynamical regimes are analyzed, which can be of the following types: punctuated unbounded growth, punctuated increase or punctuated degradation to a stationary state, convergence to a stationary state with sharp reversals of plateaus, oscillatory attenuation, everlasting fluctuations, everlasting up–down plateau reversals, and divergence in finite time. The theorem is proved that, for the case characterizing the evolution under gain and competition, solutions are always bounded, if the feedback is destructive. We find that even a small noise level profoundly affects the position of the finite-time singularities. Finally, we demonstrate the feasibility of predicting the critical time of solutions having finite-time singularities from the knowledge of a simple quadratic approximation of the early time dynamics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3