Dissolved Oxygen-And Temperature-Dependent Simulation of the Population Dynamics of Moon Jellyfish (Aurelia coerulea) Polyps

Author:

Jin Hongsung,Kim Kwangyoung,Choi Ilsu,Han DongyeobORCID

Abstract

As the extent of hypoxia in coastal waters increases, the survivorship of jellyfish polyps relative to that of competing sessile organisms often increases, enabling them to reproduce more prolifically, leading to a medusa bloom in the following year. Quantifying the population of polyps can be used to predict when these blooms will occur. We used a time-delayed logistic equation to quantify the response to variable dissolved oxygen (DO) concentrations and temperatures in a population of moon jellyfish (Aurelia coerulea) polyps on substrates that carried competing sessile organisms. The availability of substrate depends on the DO threshold for each competitor, and substrates only become available to the polyps during hypoxic periods. We used the median sublethal concentration (SLC50) thresholds of hypoxia for different groups of benthic organisms to calculate the DO-dependent survivorship of A. coerulea polyps competing on the substrate. Since the median lethal time (LT50) for cnidarians is close to 240 h, we chose a 10-day delay in the time-delayed logistic equation. The carrying capacity is determined every 10 days depending on DO concentrations and temperature. The polyps reproduce by budding at a temperature-dependent rate after settling on the substrate during the hypoxic period, and thus, the annual polyp reproduction rate is determined by multiplying the temperature-dependent budding rate by the DO-dependent survivorship. The duration of hypoxia is a key factor determining the polyp population, which can increase more as the duration of hypoxia increases. Modeling simulations were compared to observed data. In this model, the DO and temperature distribution data make it possible to quantify variations in the population of the A. coerulea polyps, which can be used to predict the abundance and appearance of medusa the following year.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3