Exploration of uniform heat flux on the flow and heat transportation of ferrofluids along a smooth plate: Comparative investigation

Author:

Usman Muhammad1,Hamid Muhammad1,Mohyud Din Syed Tauseef2ORCID,Waheed Asif3,Wang Wei1

Affiliation:

1. School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China

2. Department of Mathematics, Faculty of Sciences, HITEC University, Taxila Cantt, Pakistan

3. Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan

Abstract

The paper is devoted to a new extension in Gegenbauer wavelet method (GWM) to investigate the transfer of heat and MHD boundary-layer flow of ferrofluids beside a flat plate with velocity slip. A homogenous model study is conducted in which we assumed the heat transfer and forced convective flow of ferrofluids along a flat plate with a uniform wall heat flux. In the direction of transverse to plate, a magnetic field is imposed. Three various magnetic nanoparticle types including Mn–ZnFe2O4, CoFe2O4, Fe3O4are incorporated inside the base fluid. Two types of base fluids (water and kerosene) with bad thermal conductivity as compared to nanoparticles of solid magnetic have been assumed. The mathematical model is tackled via modified Gegenbauer wavelet method (MGWM). A simulation is accomplished for individual ferrofluid mixture by assuming the prevailing impacts of uniform and slip heat fluxes. The variation of heat transfers and skin friction were also observed at the surface of the plate and we analyzed the better heat transfer for every mixture. Kerosene-based magnetite (Fe3O4) delivers the better rate of heat transfer at wall due to its association with the kerosene-based Mn–Zn and cobalt ferrites. The slip velocity and magnetic field effects on the temperature, dimensionless velocity, rate of heat transfer and skin friction are examined for various magnetic nanoparticles inside the kerosene oil and water. We observed that the primary influence of magnetic field reduces the dimensionless surface temperature and accelerates the dimensionless velocity as compared to the hydrodynamic case, thus enhancing the rate of heat transfer and skin friction ferrofluids. Moreover, a detailed evaluation of outcomes obtained by MGWM, already published work and numerical RK-4 were found to be in excellent agreement. The error and convergence analysis are presented. Comparison of results, graphical plots, error and convergence analysis reveal the appropriateness of proposed method. The proposed algorithm can be extended for other nonlinear problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3