Analytical Treatment of Unsteady Fluid Flow of Nonhomogeneous Nanofluids among Two Infinite Parallel Surfaces: Collocation Method-Based Study

Author:

Gao Fengkai,Yu DongminORCID,Sheng Qiang

Abstract

Fluid flow and heat transfer of nanofluids have gained a lot of attention due to their wide application in industry. In this context, the appropriate solution to such phenomena is the study of this exciting and challenging field by the research community. This paper presents an extension of a well-known collocation method (CM) to investigate the accurate solutions to unsteady flow and heat transfer among two parallel plates. First, a mathematical model is developed for the discussed phenomena, then this model is converted into a non-dimensional form using viable similarity variables. In order to inspect the accurate solutions of the accomplished set of nonlinear ordinary differential equations, a collocation method is proposed and applied successfully. Various simulations are performed to analyze the behavior of non-dimensional velocity, temperature, and concentration profiles alongside the deviation of physical parameters present in the model, and then plotted graphically. It is important to mention that the velocity is enhanced due to the higher impact of the parameter Ha. The parameter Nt caused an efficient enhancement in the temperature distribution while the parameters Nt provided a drop in the temperature that actually affected the rate of heat transmission. Dual behavior of concentration is noted for parameter b, while it can be noted that mixed increasing behavior is available for the concentration against Le. The behavior of skin friction, the Nusselt number, and the Sherwood number were also investigated in addition to the physical parameters. It was observed that the Nusselt number increases with the enhancement of the effects of the magnetic field parameter and the Prandtl number. A comparative study shows that the proposed scheme is very effective and reliable in investigating the solutions of the discussed phenomena and can be extended to find the solutions to more nonlinear physical problems with complex geometry.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3