Affiliation:
1. Department of Mathematics, Indian Institute of Technology, Roorkee, India
Abstract
This paper aims to look into the determination of effective area-average concentration and dispersion coefficient associated with unsteady flow through a small-diameter tube where a solute undergoes first-order chemical reaction both within the fluid and at the boundary. The reaction consists of a reversible component due to phase exchange between the flowing fluid and the wall layer, and an irreversible component due to absorption into the wall. To understand the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Finite Difference Method. The resultant equation shows how the dispersion coefficient is influenced by the first-order chemical reaction. The effects of various dimensionless parameters e.g. Da (the Damkohler number), α (phase partitioning number) and Γ (dimensionless absorption number) on dispersion are discussed. One of the results exposes that the dispersion coefficient may approach its steady-state limit in a short time at a high value of Damkohler number (say Da ≥ 10) and a small but nonzero value of absorption rate (say Γ ≤ 0.5).
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献