Affiliation:
1. Department of Big Data Science, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
Abstract
In this paper, we use a semidiscretization method to derive a discrete predator–prey model with Holling type II, whose continuous version is stated in [F. Wu and Y. J. Jiao, Stability and Hopf bifurcation of a predator-prey model, Bound. Value Probl. 129 (2019) 1–11]. First, the existence and local stability of fixed points of the system are investigated by employing a key lemma. Then we obtain the sufficient conditions for the occurrence of the transcritical bifurcation and Neimark–Sacker bifurcation and the stability of the closed orbits bifurcated by using the Center Manifold theorem and bifurcation theory. Finally, we present numerical simulations to verify corresponding theoretical results and reveal some new dynamics.
Funder
National Natural Science Foundation of China
Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province
National Natural Science Foundation of Zhejiang University of Science and Technology
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modelling and Simulation
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献