Affiliation:
1. Department of Electrical Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, Gujarat, India
2. Department of Electrical Engineering, Indian Institute of Technology (IIT) Bombay, Mumbai, Maharashtra 400076, India
Abstract
Identification of seizure using electroencephalogram (EEG) signal is crucial to detect diseases like epilepsy. Manual epilepsy detection is time consuming and prone to errors. Various techniques have been developed to get quick and accurate results for epilepsy detection. We propose a novel approach to detect epileptic seizure using bi-orthogonal wavelet filters. The bi-orthogonal wavelet filters divide the EEG signal into different sub-bands. Then different features, i.e., Shannon entropy (ShEn), Renyi entropy (RenEn), fractal dimension (FD), energy and fuzzy entropy (FE) are extracted from the sub-bands. The [Formula: see text]-values of the features are used to evaluate the discriminating ability of the features. These features are given as input to the support vector machine (SVM). The EEG signals are then classified into the following classes: (i) normal versus seizure, (ii) seizure-free versus seizure, (iii) normal versus seizure-free versus seizure, and (iv) normal versus seizure-free. We have used two independent datasets: a public dataset for training and validation of the model, and a private dataset for evaluating the model’s performance. The ten-fold cross-validation method is used here to reduce the chances of over fitting. The SVM classifier yielded 100% accuracy in discriminating both seizure-free and normal patients for public dataset, and inter-ictal and ictal for private dataset. It also gave very good classification accuracies for the other classification problems for both the datasets. The proposed method is ready for the clinical trial to be tested with huge databases before the actual practical usage.
Publisher
World Scientific Pub Co Pte Lt
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献