Affiliation:
1. Computer Engineering Department, Engineering Faculty, Munzur University, Tunceli, Turkey
Abstract
Background and objective: Deep learning structures have recently achieved remarkable success in the field of machine learning. Convolutional neural networks (CNN) in image processing and long-short term memory (LSTM) in the time-series analysis are commonly used deep learning algorithms. Healthcare applications of deep learning algorithms provide important contributions for computer-aided diagnosis research. In this study, convolutional long-short term memory (CLSTM) network was used for automatic classification of EEG signals and automatic seizure detection. Methods: A new nine-layer deep network model consisting of convolutional and LSTM layers was designed. The signals processed in the convolutional layers were given as an input to the LSTM network whose outputs were processed in densely connected neural network layers. The EEG data is appropriate for a model having 1-D convolution layers. A bidirectional model was employed in the LSTM layer. Results: Bonn University EEG database with five different datasets was used for experimental studies. In this database, each dataset contains 23.6[Formula: see text]s duration 100 single channel EEG segments which consist of 4097 dimensional samples (173.61[Formula: see text]Hz). Eight two-class and three three-class clinical scenarios were examined. When the experimental results were evaluated, it was seen that the proposed model had high accuracy on both binary and ternary classification tasks. Conclusions: The proposed end-to-end learning structure showed a good performance without using any hand-crafted feature extraction or shallow classifiers to detect the seizures. The model does not require filtering, and also automatically learns to filter the input as well. As a result, the proposed model can process long duration EEG signals without applying segmentation, and can detect epileptic seizures automatically by using the correlation of ictal and interictal signals of raw data.
Publisher
World Scientific Pub Co Pte Lt
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献