THE EFFECTS OF PARALLEL AND SERIES ELASTIC COMPONENTS ON THE ACTIVE CAT SOLEUS FORCE-LENGTH RELATIONSHIP

Author:

RODE CHRISTIAN1,SIEBERT TOBIAS1,HERZOG WALTER2,BLICKHAN REINHARD1

Affiliation:

1. Institute of Motion Science, Friedrich Schiller University, Seidelstr. 20, Jena, 07749, Germany

2. Faculty of Kinesiology, University of Calgary, 2500 University Drive, NW, Calgary, AB T2N1N4, Canada

Abstract

Typically, active muscle force is calculated by subtracting measured passive force from measured total force for corresponding whole muscle lengths (standard method). From a mechanical point of view, this requires a parallel elastic component (PEC) that is arranged in parallel to both the series elastic component (SEC) and the contractile component (CC). From a morphological point of view, however, the PEC should be rather in parallel to the CC, and both in series to the SEC (model [CC]). In this study, we investigated the differences in active muscle force estimated with these two different approaches and their impact on the interpretation of experiments. We measured passive forces without stimulation and total forces during supramaximal stimulation of six cat soleus muscles in end-held isometric contractions from lengths near active insufficiency to lengths close to inducing stretch damage. The active forces estimated with model [CC] reach about 10% higher maximum isometric forces and reveal about 10% longer optimal lengths of the CC compared to the standard method. Model choice affects the interpretation of the physiological working range and residual force enhancement. The active force-length relationships of the contractile component determined with model [CC] agree better with the theoretical sarcomere force-length relationship.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3