A Simple Model to Predict Loads within Muscle-Tendon Complexes of the Shoulder during Fast Motions

Author:

Mörl FalkORCID,Bradl Ingo

Abstract

The load scenario within the shoulder joint among its muscle–tendon complexes during fast motions is of interest, as it would allow an evaluation of critical, accident-like motions. To enhance knowledge, a modelling approach was carried out and compared to experimental data. Nine subjects were investigated while performing tasks that ranged from easy to demanding. Motions were (1) an easy lift of a small weight, (2) a push against a force measurement device, and (3) a gentle side fall against the immovable force measurement device. Extracted data were the kinematics of the right arm and the contact force on the elbow. A simple direct dynamics shoulder model actuated by Hill-type muscle models was arranged to simulate the three experimental motions. The Hatze-based activation of the muscle models was used without any further simulation of neural regulation. For fast motions, the simple shoulder model predicts well the shoulder angle or contact force values, and data fit well into the variability of the data measured experimentally. Because there was no implementation of more complex neural regulation, slow motions, as performed by the subjects, were, in part, not predicted by the shoulder model. Simple mechanisms can be described by the simple model: When activated, the larger deltoid muscle is able to protect the smaller supraspinatus muscle. Furthermore, in awkward conditions, the gentle side fall against an immovable device alone has enough momentum to damage small muscles.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3