Affiliation:
1. School of Mechatronics Engineering Harbin Institute of Technology Harbin 150001, Heilongjiang, P. R. China
Abstract
Microfluidics technology has emerged as an attractive approach in physics, chemistry and biomedical science by providing increased analytical accuracy, sensitivity and efficiency in minimized systems. Numerical simulation can improve theoretical understanding, reduce prototyping consumption, and speed up development. In this paper, we setup a 3D model of an integrated microfluidic system and study the multi-physical dynamics of the system via the finite element method (FEM). The fluid–structure interaction (FSI) of fluid and an immobilized single cell within the cell trapping component, and the on-chip thermodynamics have been analyzed. The velocity magnitude and streamline of flow field, the distribution of von Mises stress and Tresca stress on the FSI interface have been studied. In addition, the on-chip heat transfer performance and temperature distribution in the heating zone have been evaluated and analyzed respectively. The presented approach is capable of optimizing microfluidic design, and revealing the complicated mechanism of multi-physical fields. Therefore, it holds the potential for improving microfluidics application in fundamental research and clinical settings.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献