Equations in oligomorphic clones and the constraint satisfaction problem for ω-categorical structures

Author:

Barto Libor1,Kompatscher Michael1,Olšák Miroslav1,Trung Van Pham2,Pinsker Michael34

Affiliation:

1. Department of Algebra, MFF UK, Charles University, Sokolovska 83, 186 00 Praha 8, Czech Republic

2. Department of Mathematics for Computer Science, Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

3. Institut für Diskrete Mathematik und Geometrie, FG Algebra, TU Wien, Austria

4. Department of Algebra, Charles University, Czech Republic

Abstract

There exist two conjectures for constraint satisfaction problems (CSPs) of reducts of finitely bounded homogeneous structures: the first one states that tractability of the CSP of such a structure is, when the structure is a model-complete core, equivalent to its polymorphism clone satisfying a certain nontrivial linear identity modulo outer embeddings. The second conjecture, challenging the approach via model-complete cores by reflections, states that tractability is equivalent to the linear identities (without outer embeddings) satisfied by its polymorphisms clone, together with the natural uniformity on it, being nontrivial. We prove that the identities satisfied in the polymorphism clone of a structure allow for conclusions about the orbit growth of its automorphism group, and apply this to show that the two conjectures are equivalent. We contrast this with a counterexample showing that [Formula: see text]-categoricity alone is insufficient to imply the equivalence of the two conditions above in a model-complete core. Taking another approach, we then show how the Ramsey property of a homogeneous structure can be utilized for obtaining a similar equivalence under different conditions. We then prove that any polymorphism of sufficiently large arity which is totally symmetric modulo outer embeddings of a finitely bounded structure can be turned into a nontrivial system of linear identities, and obtain nontrivial linear identities for all tractable cases of reducts of the rational order, the random graph, and the random poset. Finally, we provide a new and short proof, in the language of monoids, of the theorem stating that every [Formula: see text]-categorical structure is homomorphically equivalent to a model-complete core.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity Classification Transfer for CSPs via Algebraic Products;SIAM Journal on Computing;2024-09-12

2. Smooth approximations: An algebraic approach to CSPs over finitely bounded homogeneous structures;Journal of the ACM;2024-08-17

3. A Complexity Dichotomy in Spatial Reasoning via Ramsey Theory;ACM Transactions on Computation Theory;2024-06-10

4. ON THE ZARISKI TOPOLOGY ON ENDOMORPHISM MONOIDS OF OMEGA-CATEGORICAL STRUCTURES;The Journal of Symbolic Logic;2023-10-31

5. Symmetries of Graphs and Structures that Fail to Interpret a Finite Thing;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3