A Complexity Dichotomy in Spatial Reasoning via Ramsey Theory

Author:

Bodirsky Manuel1ORCID,Bodor Bertalan2ORCID

Affiliation:

1. Institut für Algebra, Fakultät für Mathematik, TU Dresden, Germany

2. Department of Algebra and Number Theory, University of Szeged, Szeged, Hungary

Abstract

Constraint satisfaction problems (CSPs) for first-order reducts of finitely bounded homogeneous structures form a large class of computational problems that might exhibit a complexity dichotomy, P versus NP-complete. A powerful method to obtain polynomial-time tractability results for such CSPs is a certain reduction to polynomial-time tractable finite-domain CSPs defined over k -types, for a sufficiently large k . We give sufficient conditions when this method can be applied and apply these conditions to obtain a new complexity dichotomy for CSPs of first-order expansions of the basic relations of the well-studied spatial reasoning formalism RCC5. We also classify which of these CSPs can be expressed in Datalog. Our method relies on Ramsey theory; we prove that RCC5 has a Ramsey order expansion.

Funder

European Union

Ministry for Innovation and Technology, Hungary

Publisher

Association for Computing Machinery (ACM)

Reference51 articles.

1. Affine systems of equations and counting infinitary logic

2. Manuel Bodirsky and Bertalan Bodor. 2021. Canonical polymorphisms of Ramsey structures and the unique interpolation property. In Proceedings of the Symposium on Logic in Computer Science.

3. Permutation groups with small orbit growth

4. Qualitative temporal and spatial reasoning revisited;Bodirsky Manuel;Journal of Logic and Computation,2009

5. Brandon Bennett. 1994. Spatial reasoning with propositional logics. In Proceedings of the International Conference on Knowledge Representation and Reasoning, pages 51–62. Morgan Kaufmann.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Complexity of Resilience Problems via Valued Constraint Satisfaction Problems;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3