GALOIS-STABILITY FOR TAME ABSTRACT ELEMENTARY CLASSES

Author:

GROSSBERG RAMI1,VANDIEREN MONICA2

Affiliation:

1. Department of Mathematics, Carnegie Mellon University, Pittsburgh PA 15213, USA

2. Department of Mathematics, University of Michigan, Ann Arbor MI 48109-1109, USA

Abstract

We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper, we explore stability results in this new context. We assume that [Formula: see text] is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include:. Theorem 0.1. Suppose that [Formula: see text] is not only tame, but [Formula: see text]-tame. If [Formula: see text] and [Formula: see text] is Galois stable in μ, then [Formula: see text], where [Formula: see text] is a relative of κ(T) from first order logic. [Formula: see text] is the Hanf number of the class [Formula: see text]. It is known that [Formula: see text]. The theorem generalizes a result from [17]. It is used to prove both the existence of Morley sequences for non-splitting (improving [22, Claim 4.15] and a result from [7]) and the following initial step towards a stability spectrum theorem for tame classes:. Theorem 0.2. If [Formula: see text] is Galois-stable in some [Formula: see text], then [Formula: see text] is stable in every κ with κμ=κ. For example, under GCH we have that [Formula: see text] Galois-stable in μ implies that [Formula: see text] is Galois-stable in μ+n for all n < ω.

Publisher

World Scientific Pub Co Pte Lt

Subject

Logic

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Note on Torsion Modules with Pure Embeddings;Notre Dame Journal of Formal Logic;2023-11-01

2. STABILITY RESULTS ASSUMING TAMENESS, MONSTER MODEL, AND CONTINUITY OF NONSPLITTING;The Journal of Symbolic Logic;2023-08-07

3. Hanf number of the first stability cardinal in AECs;Annals of Pure and Applied Logic;2023-02

4. Tameness in generalized metric structures;Archive for Mathematical Logic;2022-10-22

5. SOME STABLE NON-ELEMENTARY CLASSES OF MODULES;The Journal of Symbolic Logic;2021-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3