Affiliation:
1. Department of Mathematics, Carnegie Mellon University, Pittsburgh PA 15213, USA
2. Department of Mathematics, University of Michigan, Ann Arbor MI 48109-1109, USA
Abstract
We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper, we explore stability results in this new context. We assume that [Formula: see text] is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include:. Theorem 0.1. Suppose that [Formula: see text] is not only tame, but [Formula: see text]-tame. If [Formula: see text] and [Formula: see text] is Galois stable in μ, then [Formula: see text], where [Formula: see text] is a relative of κ(T) from first order logic. [Formula: see text] is the Hanf number of the class [Formula: see text]. It is known that [Formula: see text]. The theorem generalizes a result from [17]. It is used to prove both the existence of Morley sequences for non-splitting (improving [22, Claim 4.15] and a result from [7]) and the following initial step towards a stability spectrum theorem for tame classes:. Theorem 0.2. If [Formula: see text] is Galois-stable in some [Formula: see text], then [Formula: see text] is stable in every κ with κμ=κ. For example, under GCH we have that [Formula: see text] Galois-stable in μ implies that [Formula: see text] is Galois-stable in μ+n for all n < ω.
Publisher
World Scientific Pub Co Pte Lt
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献