STABILITY RESULTS ASSUMING TAMENESS, MONSTER MODEL, AND CONTINUITY OF NONSPLITTING

Author:

LEUNG SAMSONORCID

Abstract

Abstract Assuming the existence of a monster model, tameness, and continuity of nonsplitting in an abstract elementary class (AEC), we extend known superstability results: let $\mu>\operatorname {LS}(\mathbf {K})$ be a regular stability cardinal and let $\chi $ be the local character of $\mu $ -nonsplitting. The following holds: 1. When $\mu $ -nonforking is restricted to $(\mu ,\geq \chi )$ -limit models ordered by universal extensions, it enjoys invariance, monotonicity, uniqueness, existence, extension, and continuity. It also has local character $\chi $ . This generalizes Vasey’s result [37, Corollary 13.16] which assumed $\mu $ -superstability to obtain same properties but with local character $\aleph _0$ . 2. There is $\lambda \in [\mu ,h(\mu ))$ such that if $\mathbf {K}$ is stable in every cardinal between $\mu $ and $\lambda $ , then $\mathbf {K}$ has $\mu $ -symmetry while $\mu $ -nonforking in (1) has symmetry. In this case: (a) $\mathbf {K}$ has the uniqueness of $(\mu ,\geq \chi )$ -limit models: if $M_1,M_2$ are both $(\mu ,\geq \chi )$ -limit over some $M_0\in K_{\mu }$ , then $M_1\cong _{M_0}M_2$ ; (b) any increasing chain of $\mu ^+$ -saturated models of length $\geq \chi $ has a $\mu ^+$ -saturated union. These generalize [31] and remove the symmetry assumption in [10, 38] . Under $(<\mu )$ -tameness, the conclusions of (1), (2)(a)(b) are equivalent to $\mathbf {K}$ having the $\chi $ -local character of $\mu $ -nonsplitting. Grossberg and Vasey [18, 38] gave eventual superstability criteria for tame AECs with a monster model. We remove the high cardinal threshold and reduce the cardinal jump between equivalent superstability criteria. We also add two new superstability criteria to the list: a weaker version of solvability and the boundedness of the U-rank.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3