A CONSTRAINT-BASED STOICHIOMETRIC MODEL OF THE STEROIDOGENIC NETWORK OF ZEBRAFISH (DANIO RERIO)

Author:

HALA D.1,AMIN A.2,MIKLER A.2,HUGGETT D. B.1

Affiliation:

1. Department of Biology, Institute of Applied Sciences, University of North Texas, Denton, Texas, 76203, U.S.

2. Computational Epidemiology Research Laboratory (CERL), University of North Texas, Denton, Texas, 76203, U.S.

Abstract

The metabolic process of steroidogenesis exhibits a complex biochemical network topology as the activity of various steroidogenic enzymes control cholesterol metabolism to steroid hormone derivatives. In this paper, a stoichiometric reconstruction of a sub-set of 65 reactions from the zebrafish (Danio rerio) steroidogenic network is presented and simulated using uniform reaction constraints. The reconstruction defined a set of 65 enzyme catalyzed reactions and 37 exchange or transport reactions for steroid metabolites. The reconstructed reactions were inclusive of cholesterol and androgen/estrogen metabolism. Biased (statement of network objective function) and un-biased (no statement of objective function) analyses were applied to identify network properties dependent on reaction stoichiometry. Random sampling of flux distributions through the network identified highly-correlated reaction sets that corresponded to the catalysis of steroid metabolites of physiological relevance. Subsequently, optimal flux distributions through network pathways were determined for the production of the three steroidogenic metabolites of: 11-deoxycorticosterone, testosterone and 17β-estradiol. Furthermore, flux variability analyses revealed and confirmed optimal network fluxes through physiologically feasible pathways. The stoichiometric dependence of reactions was also confirmed by conducting deletions of reactions utilized for the optimal production of 17β-estradiol. This paper demonstrates the potential application of constraint-based reconstruction and simulation techniques in enabling the construction of deterministic and predictive physiological models. This acknowledgement is poignant considering the susceptibility of the steroidogenic network to environmental and anthropogenic stressors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3