Constraints-based stoichiometric analysis of hypoxic stress on steroidogenesis in fathead minnows, Pimephales promelas

Author:

Hala David1,Petersen Lene H.1,Martinovic Dalma2,Huggett Duane B.1

Affiliation:

1. Institute of Applied Sciences, University of North Texas, Denton, TX 76203, USA

2. Department of Biology, University of St Thomas, St Paul, MN 55105, USA

Abstract

SUMMARY In this study, an in silico genome-scale metabolic model of steroidogenesis was used to investigate the effects of hypoxic stress on steroid hormone productions in fish. Adult female fathead minnows (Pimephales promelas) were exposed to hypoxia for 7 days with fish sub-sampled on days 1, 3 and 7 of exposure. At each time point, selected steroid enzyme gene expressions and steroid hormone productions were quantified in ovaries. Fold changes in steroid enzyme gene expressions were used to qualitatively scale transcript enzyme reaction constraints (akin to the range of an enzyme’s catalytic activity) in the in silico model. Subsequently, in silico predicted steroid hormone productions were qualitatively compared with experimental results. Key findings were as follows. (1) In silico gene deletion analysis identified highly conserved ‘essential’ genes required for steroid hormone productions. These agreed well (75%) with literature-published genes downregulated in vertebrates (fish and mammal) exposed to hypoxia. (2) Quantification of steroid hormones produced ex vivo from ovaries showed a significant reduction for 17β-estradiol and 17α,20β-dihydroxypregnenone production after 24 h (day 1) of exposure. This lowered 17β-estradiol production was concomitant with downregulation of cyp19a1a gene expression in ovaries. In silico predictions showed agreement with experimentation by predicting effects on estrogen (17β-estradiol and estrone) production. (3) Stochastic sampling of in silico reactions indicated that cholesterol uptake and catalysis to pregnenolone along with estrogen methyltransferase and glucuronidation reactions were also impacted by hypoxia. Taken together, this in silico analysis introduces a powerful model for pathway analysis that can lend insights on the effects of various stressor scenarios on metabolic functions.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3