NEW CHALLENGES FACING INTEGRATIVE BIOLOGICAL SCIENCE IN THE POST-GENOMIC ERA

Author:

OEHMEN CHRISTOPHER S.1,STRAATSMA TJERK P.1,ANDERSON GORDON A.1,ORR GALYA1,WEBB-ROBERTSON BOBBIE-JO M.1,TAYLOR RONALD C.1,MOONEY RYAN W.1,BAXTER DOUG J.1,JONES DONALD R.1,DIXON DAVID A.2

Affiliation:

1. Pacific Northwest National Laboratory, Richland, WA 99352, USA

2. Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA

Abstract

The future of biology will be increasingly driven by the fundamental paradigm shift from hypothesis-driven research to data-driven discovery research employing the growing volume of biological data coupled to experimental testing of new discoveries. But hardware and software limitations in the current workflow infrastructure make it impossible or intractible to use real data from disparate sources for large-scale biological research. We identify key technological developments needed to enable this paradigm shift involving (1) the ability to store and manage extremely large datasets which are dispersed over a wide geographical area, (2) development of novel analysis and visualization tools which are capable of operating on enormous data resources without overwhelming researchers with unusable information, and (3) formalisms for integrating mathematical models of biosystems from the molecular level to the organism population level. This will require the development of algorithms and tools which efficiently utilize high-performance compute power and large storage infrastructures. The end result will be the ability of a researcher to integrate complex data from many different sources with simulations to analyze a given system at a wide range of temporal and spatial scales in a single conceptual model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3