ON DESIGN AND APPLICATION MAPPING OF A NETWORK-ON-CHIP(NOC) ARCHITECTURE

Author:

BAHN JUN HO1,LEE SEUNG EUN1,YANG YOON SEOK1,YANG JUNGSOOK1,BAGHERZADEH NADER1

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of California, Irvine - Irvine, California 92697-2625, U.S.A.

Abstract

As the number of integrated IP cores in the current System-on-Chips (SoCs) keeps increasing, communication requirements among cores can not be sufficiently satisfied using either traditional or multi-layer bus architectures because of their poor scalability and bandwidth limitation on a single bus. While new interconnection techniques have been explored to overcome such a limitation, the notion of utilizing Network-on-Chip (NoC) technologies for the future generation of high performance and low power chips for myriad of applications, in particular for wireless communication and multimedia processing, has been of great importance. In order for the NoC technologies to succeed, realistic specifications such as throughput, latency, moderate design complexity, programming model, and design tools are necessary requirements. For this purpose, we have covered some of the key and challenging design issues specific to the NoC architecture such as the router design, network interface (NI) issues, and complete system-level modeling. In this paper, we propose a multi-processor system platform adopting NoC techniques, called NePA (Network-based Processor Array). As a component of system platform, the fundamental NoC techniques including the router architecture and generic NI are defined and implemented adopting low power and clock efficient techniques. Using a high-level cycle-accurate simulation, various parameters relevant to its performance and its systematic modeling are extracted and analyzed. By combining various developed systematic models, we construct the tool chain to pursue hardware/software design tradeoffs necessary for better understanding of the NoC techniques. Finally utilizing implementation of parallel FFT algorithms on the homogeneous NePA, the feasibility and advantages of using NoC techniques are shown.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subnetwork Based Traffic Aware Rerouting for CMesh Bufferless Network-on-Chip;Journal of Circuits, Systems and Computers;2024-02-16

2. Reduction Of Energy Consumption in NoC Through The Application Of Novel Encoding Techniques;2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE);2021-11-10

3. Unified System Network Architecture: Flexible and Area-Efficient NoC Architecture with Multiple Ports and Cores;Electronics;2020-08-15

4. Application of Logical Sub-networking in Congestion-aware Deadlock-free SDmesh Routing;ACM Transactions on Embedded Computing Systems;2020-07-16

5. Design of a Deadlock-Free XY-YX Router for Network-on-Chip;Advances in Intelligent Systems and Computing;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3