MPI ON MILLIONS OF CORES

Author:

BALAJI PAVAN1,BUNTINAS DARIUS1,GOODELL DAVID1,GROPP WILLIAM2,HOEFLER TORSTEN2,KUMAR SAMEER3,LUSK EWING1,THAKUR RAJEEV1,TRÄFF JESPER LARSSON4

Affiliation:

1. Argonne National Laboratory, Argonne, IL 60439, USA

2. University of Illinois, Urbana, IL 61801, USA

3. IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

4. Dept. of Scientific Computing, Univ. of Vienna, Austria

Abstract

Petascale parallel computers with more than a million processing cores are expected to be available in a couple of years. Although MPI is the dominant programming interface today for large-scale systems that at the highest end already have close to 300,000 processors, a challenging question to both researchers and users is whether MPI will scale to processor and core counts in the millions. In this paper, we examine the issue of scalability of MPI to very large systems. We first examine the MPI specification itself and discuss areas with scalability concerns and how they can be overcome. We then investigate issues that an MPI implementation must address in order to be scalable. To illustrate the issues, we ran a number of simple experiments to measure MPI memory consumption at scale up to 131,072 processes, or 80%, of the IBM Blue Gene/P system at Argonne National Laboratory. Based on the results, we identified nonscalable aspects of the MPI implementation and found ways to tune it to reduce its memory footprint. We also briefly discuss issues in application scalability to large process counts and features of MPI that enable the use of other techniques to alleviate scalability limitations in applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3