EMPRESS: Accelerating Scientific Discovery through Descriptive Metadata Management

Author:

Lawson Margaret1,Gropp William1,Lofstead Jay2

Affiliation:

1. The University of Illinois at Urbana-Champaign, United States

2. Sandia National Laboratories, United States

Abstract

High-performance computing scientists are producing unprecedented volumes of data that take a long time to load for analysis. However, many analyses only require loading in the data containing particular features of interest and scientists have many approaches for identifying these features. Therefore, if scientists store information (descriptive metadata) about these identified features, then for subsequent analyses they can use this information to only read in the data containing these features. This can greatly reduce the amount of data that scientists have to read in, thereby accelerating analysis. Despite the potential benefits of descriptive metadata management, no prior work has created a descriptive metadata system that can help scientists working with a wide range of applications and analyses to restrict their reads to data containing features of interest. In this article, we present EMPRESS, the first such solution. EMPRESS offers all of the features needed to help accelerate discovery: It can accelerate analysis by up to 300 ×, supports a wide range of applications and analyses, is high-performing, is highly scalable, and requires minimal storage space. In addition, EMPRESS offers features required for a production-oriented system: scalable metadata consistency techniques, flexible system configurations, fault tolerance as a service, and portability.

Funder

U.S. Department of Energy National Nuclear Security Agency ATDM

U.S. Department of Energy Office of Science, under the SSIO

SIRIUS project and the Data Management

United States Department of Energy through the Computational Sciences Graduate Fellowship

State of Illinois

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3