Affiliation:
1. Department of Computer Science and Engineering, University of Calcutta, Kolkata 700009, India
2. Department of Mathematics, National Institute of Technology – Puducherry, Karaikal 609605, India
Abstract
In this paper, we propose a non-homogeneous Poisson process (NHPP) based software reliability growth model (SRGM) in the presence of modified imperfect debugging and fault generation phenomenon. The testing team may not be able to remove a fault perfectly on observation of a failure due to the complexity of software systems and incomplete understanding of software, and the original fault may remain, or get replaced by another fault causing error generation. We have proposed an exponentially increasing fault content function and constant fault detection rate. The total fault content of the software for our proposed model increases rapidly at the beginning of the testing process. It grows gradually at the end of the testing process because of increasing efficiency of the testing team with testing time. We use the maximum likelihood estimation method to estimate the unknown parameters of the proposed model. The applicability of our proposed model and comparisons with established models in terms of goodness of fit and predictive validity have been presented using five known software failure data sets. Experimental results show that the proposed model gives a better fit to the real failure data sets and predicts the future behavior of software development more accurately than the traditional SRGMs.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献