AN NHPP SOFTWARE RELIABILITY GROWTH MODEL WITH IMPERFECT DEBUGGING AND ERROR GENERATION

Author:

ROY P.1,MAHAPATRA G. S.2,DEY K. N.1

Affiliation:

1. Department of Computer Science and Engineering, University of Calcutta, Kolkata 700009, India

2. Department of Mathematics, National Institute of Technology – Puducherry, Karaikal 609605, India

Abstract

In this paper, we propose a non-homogeneous Poisson process (NHPP) based software reliability growth model (SRGM) in the presence of modified imperfect debugging and fault generation phenomenon. The testing team may not be able to remove a fault perfectly on observation of a failure due to the complexity of software systems and incomplete understanding of software, and the original fault may remain, or get replaced by another fault causing error generation. We have proposed an exponentially increasing fault content function and constant fault detection rate. The total fault content of the software for our proposed model increases rapidly at the beginning of the testing process. It grows gradually at the end of the testing process because of increasing efficiency of the testing team with testing time. We use the maximum likelihood estimation method to estimate the unknown parameters of the proposed model. The applicability of our proposed model and comparisons with established models in terms of goodness of fit and predictive validity have been presented using five known software failure data sets. Experimental results show that the proposed model gives a better fit to the real failure data sets and predicts the future behavior of software development more accurately than the traditional SRGMs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3