BLIND SOURCE SEPARATION: AN APPLICATION TO THE MT. MERAPI VOLCANO, INDONESIA

Author:

CABRAS GIUSEPPE1,CARNIEL ROBERTO23,WASSERMANN JOACHIM4

Affiliation:

1. Dipartimento di Ingegneria Elettrica Gestionale e Meccanica, Università di Udine, Via delle Scienze, 208; 33100 Udine, Italy

2. Laboratorio di misure e trattamento dei segnali, DIEA, Università di Udine, Via delle Scienze, 208; 33100 Udine, Italy

3. Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 D.F. Mexico, Mexico

4. Department of Earth and Environmental Sciences, (Geophys. Observatory), Ludwig Maximilians Universität München, D-80333, Germany

Abstract

Independent Component Analysis (ICA) is an emerging new technique in the blind identification of signals recorded in a variety of different fields. ICA tries to find the most statistically independent sources from an observable random vector, with the only restriction that all sources but at most one are non-Gaussian; no other a priori information on sources and mixing dynamic system are needed. The applications of these techniques to the analysis of volcanic time series are relatively few to date. In this paper we show that ICA is a suitable technique to separate a volcanic source component from ocean microseisms background noise in a seismic dataset recorded at the Mt. Merapi volcano, Indonesia. The encouraging results obtained with this methodology in the presented case study support their wider applicability in volcano seismology.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3