Wavefield decomposition and phase space dynamics of the seismic noise at Volcàn de Colima, Mexico: evidence of a two-state source process
-
Published:2013-01-18
Issue:1
Volume:20
Page:71-84
-
ISSN:1607-7946
-
Container-title:Nonlinear Processes in Geophysics
-
language:en
-
Short-container-title:Nonlin. Processes Geophys.
Author:
Palo M.,Cusano P.
Abstract
Abstract. We analyse the seismic noise recorded at the Colima Volcano (Mexico) in the period December 2005–May 2006 by four broadband three-component seismic stations. Specifically, we characterize the spectral content of the signal and follow its time evolution along all the data set. Moreover, we infer the properties of the attractor in the phase space by false nearest neighbours analysis and Grassberger–Procaccia algorithm, and adopt a time-domain decomposition method (independent component analysis) to find the basic constituents (independent components) of the system. Constraints on the seismic wavefield are inferred by the polarization analysis. We find two states of the background seismicity visible in different time-intervals that are Phase A and Phase B. Phase A has a spectrum with two peaks at 0.15 Hz and 0.3 Hz, with the latter dominating, an attractor of correlation dimension close to 3, three quasi-monochromatic independent components, and a relevant fraction of crater-pointing polarization solutions in the near-field. In Phase B, the spectrum is preserved but with the highest peak at 0.15 Hz, the attractor has a correlation dimension close to 2, two independent components are extracted, and the polarization solutions are dominated by Rayleigh waves incoming from the southwest direction. We depict two sources acting on the background seismicity that are the microseismic noise loading on the Pacific coastline and a low-energy volcanic tremor. A change in the amplitude of the microseismic noise can induce the switching from a state of the system to the other.
Publisher
Copernicus GmbH
Reference53 articles.
1. Acernese, F., Ciaramella, A., De Martino, S., Falanga, M., Godano, C., and Tagliaferri, R.: Polarisation analysis of the independent component of low frequency events at Stromboli volcano (Eolian Islands, Italy), J. Volcanol. Geother. Res. 153–168, https://doi.org/10.1016/j.jvolgeores.2004.05.005., 2004. 2. Albano, A. M., Muench, J., Mess, A. I., Rapp, P. E., and Schwartz, C.: Singular-value decomposition and the Grassberger-Procaccia algorithm, Phys. Rev. A., 38, 6, 3017–3026, 1988. 3. Almendros, J., Ibañez, J. M., Alguacil, G., Morales, J., Del Pezzo, E., La Rocca, M., Ortiz, R., Araña, V., and Blanco, M. J.: A double seismic antenna experiment at Teide Volcano: existence of local seismicity and evidence for the non existence of volcanic tremor, J. Volcanol. Geother. Res., 103, 439–462, 2000. 4. Almendros, J., Ibañez, J. M., Carmona, E., and Zandomeneghi, D.: Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain), during the May 2004 seismic activation of Teide volcano, J. Volcanol. Geother. Res., 160, 285–299, 2007. 5. Balmforth, N. J., Craster, R. V., and Rust, A. C.: Instability in flow through elastic conduits and volcanic tremor, J. Fluid Mech., 527, 353–377, 2005.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|