The “unknotting number” associated with other local moves than the crossing-change

Author:

Ogasa Eiji1

Affiliation:

1. Computer Science, Meijigakuin University, Yokohama, Kanagawa, 244-8539, Japan

Abstract

The ordinary unknotting number of 1-dimensional knots, which is defined by using the crossing-change, is a very basic and important invariant. Let [Formula: see text] be a positive integer. It is very natural to consider the “unknotting number” associated with other local moves on [Formula: see text]-dimensional knots. In this paper, we prove the following. For the ribbon-move on 2-knots, which is a local move on knots, we have the following: There is a 2-knot which is changed into the unknot by two times of the ribbon-move not by one time. The “unknotting number” associated with the ribbon-move is unbounded. For the pass-move on 1-knots, which is a local move on knots, we have the following: There is a 1-knot such that it is changed into the unknot by two times of the pass-move not by one time and such that the ordinary unknotting number is [Formula: see text]. For any positive integer [Formula: see text], there is a 1-knot whose “unknotting number” associated with the pass-move is [Formula: see text] and whose ordinary unknotting number is [Formula: see text]. Let [Formula: see text] and [Formula: see text] be positive integers. For the [Formula: see text]-move on [Formula: see text]-knots, which is a local move on knots, we have the following: Let [Formula: see text] be a non-negative integer. There is a [Formula: see text]-knot which is changed into the unknot by two times of the [Formula: see text]-move not by one time. The “unknotting number” associated with the [Formula: see text]-move is unbounded. There is a [Formula: see text]-knot which is changed into the unknot by two times of the [Formula: see text]-move not by one. The “unknotting number” associated with the [Formula: see text]-move is unbounded. We prove the following: For any positive integer [Formula: see text] and any positive integer [Formula: see text], there is a [Formula: see text]-knot which is changed into the unknot by [Formula: see text] times of the twist-move not by [Formula: see text] times.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local-moves on knots and products of knots II;Journal of Knot Theory and Its Ramifications;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3