Local-moves on knots and products of knots II

Author:

Kauffman Louis H.12,Ogasa Eiji3

Affiliation:

1. Department of Mathematics, Statistics, and Computer, Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607-7045, USA

2. Department of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk, Russia

3. Computer Science, Meijigakuin University, Yokohama, Kanagawa 244-8539, Japan

Abstract

We use the terms, knot product and local-move, as defined in the text of this paper. Let [Formula: see text] be an integer [Formula: see text]. Let [Formula: see text] be the set of simple spherical [Formula: see text]-knots in [Formula: see text]. Let [Formula: see text] be an integer [Formula: see text]. We prove that the map [Formula: see text] is bijective, where [Formula: see text]Hopf, and Hopf denotes the Hopf link. Let [Formula: see text] and [Formula: see text] be 1-links in [Formula: see text]. Suppose that [Formula: see text] is obtained from [Formula: see text] by a single pass-move, which is a local-move on 1-links. Let [Formula: see text] be a positive integer. Let [Formula: see text] denote the knot product [Formula: see text]. We prove the following: The [Formula: see text]-dimensional submanifold [Formula: see text] [Formula: see text] is obtained from [Formula: see text] by a single [Formula: see text]-pass-move, which is a local-move on [Formula: see text]-submanifolds contained in [Formula: see text]. See the body of this paper for the definitions of all local-moves in this abstract. We prove the following: Let [Formula: see text], and [Formula: see text] be positive integers. If the [Formula: see text] torus link is pass-move-equivalent to the [Formula: see text] torus link, then the Brieskorn manifolds, [Formula: see text] and [Formula: see text], are diffeomorphic as abstract manifolds. Let [Formula: see text] and [Formula: see text] be (not necessarily connected or spherical) 2-dimensional closed oriented submanifolds in [Formula: see text]. Suppose that [Formula: see text] is obtained from [Formula: see text] by a single ribbon-move, which is a local-move on 2-dimensional submanifolds contained in [Formula: see text]. Let [Formula: see text] be an integer [Formula: see text]. We prove the following: The [Formula: see text]-submanifold [Formula: see text] [Formula: see text] is obtained from [Formula: see text] by a single [Formula: see text]-pass-move, which is a local-move on [Formula: see text]-dimensional submanifolds contained in [Formula: see text].

Funder

Ministry of Education and Science of the Russian Federation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3