Alexander invariants for virtual knots

Author:

Boden Hans U.1,Dies Emily1,Gaudreau Anne Isabel1,Gerlings Adam1,Harper Eric1,Nicas Andrew J.1

Affiliation:

1. Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S-4K1, Canada

Abstract

Given a virtual knot K, we introduce a new group-valued invariant VGK called the virtual knot group, and we use the elementary ideals of VGK to define invariants of K called the virtual Alexander invariants. For instance, associated to the zeroth ideal is a polynomial HK(s, t, q) in three variables which we call the virtual Alexander polynomial, and we show that it is closely related to the generalized Alexander polynomial GK(s, t) introduced by Sawollek; Kauffman and Radford; and Silver and Williams. We define a natural normalization of the virtual Alexander polynomial and show it satisfies a skein formula. We also introduce the twisted virtual Alexander polynomial associated to a virtual knot K and a representation ϱ : VGK → GLn(R), and we define a normalization of the twisted virtual Alexander polynomial. As applications we derive bounds on the virtual crossing numbers of virtual knots from the virtual Alexander polynomial and twisted virtual Alexander polynomial.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Representations of flat virtual braids which do not preserve the forbidden relations;Journal of Knot Theory and Its Ramifications;2023-12

2. Representations of Flat Virtual Braids by Automorphisms of Free Group;Symmetry;2023-08-03

3. Multi-switches and representations of braid groups;Journal of Algebra and Its Applications;2022-11-15

4. Some congruence of the generalized Alexander invariant for periodic virtual links;Journal of Knot Theory and Its Ramifications;2022-11-10

5. Milnor’s concordance invariants for knots on surfaces;Algebraic & Geometric Topology;2022-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3