Affiliation:
1. Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Abstract
Fox conjectured the Alexander polynomial of an alternating knot is trapezoidal, i.e. the absolute values of the coefficients first increase, then stabilize and finally decrease in a symmetric way. Recently, Hirasawa and Murasugi further conjectured a relation between the number of the stable coefficients in the Alexander polynomial and the signature invariant. In this paper we prove the Hirasawa–Murasugi conjecture for two-bridge knots.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献