The Fox Trapezoidal Conjecture for Alternating Knots

Author:

Chbili Nafaa1ORCID

Affiliation:

1. Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates

Abstract

A long-standing conjecture due to R. Fox states that the coefficients of the Alexander polynomial of an alternating knot exhibit a trapezoidal pattern. In other words, these coefficients increase, stabilize, then decrease in a symmetric way. A stronger version of this conjecture states that these coefficients form a log-concave sequence. This conjecture has been recently highlighted by J. Huh as one of the most interesting problems on log-concavity of sequences. In this expository paper, we shall review the various versions of the conjecture, highlight settled cases and outline some future directions.

Funder

United Arab Emirates University

Publisher

MDPI AG

Reference52 articles.

1. Murasugi, K. (1996). Knot Theory and Its Applications, Translated from the 1993 Japanese Original by Bohdan Kupita, Birkhauser.

2. State models and the Jones polynomial;Kauffman;Topology,1987

3. Jones polynomials and classical conjectures;Murasugi;Topology,1987

4. A spanning tree expansion of the Jones polynomial;Thistlethwaite;Topology,1988

5. Alternating links and definite surfaces;Greene;Duke Math. J.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3