The Alexander polynomial of a rational link

Author:

Kidwell Mark E.1,Luse Kerry M.2ORCID

Affiliation:

1. Department of Mathematics, United States Naval Academy, 121 Blake Road, Annapolis, MD 21402, USA

2. Department of Mathematics, Trinity Washington University, 125 Michigan Avenue NE, Washington DC 20017, USA

Abstract

We relate some terms on the boundary of the Newton polygon of the Alexander polynomial [Formula: see text] of a rational link to the number and length of monochromatic twist sites in a particular diagram that we call the standard form. Normalize [Formula: see text] to be a true polynomial (as opposed to a Laurent polynomial), in such a way that terms of even total degree have positive coefficients and terms of odd total degree have negative coefficients. If the rational link has a reduced alternating diagram with no self-crossings, then [Formula: see text]. If the standard form of the rational link has [Formula: see text] monochromatic twist sites, and the [Formula: see text]th monochromatic twist site has [Formula: see text] crossings, then [Formula: see text]. Our proof employs Kauffman’s clock moves and a lattice for the terms of [Formula: see text] in which the [Formula: see text]-power cannot decrease.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3