Abstract
We give an algorithmic computation for the height of Kauffman's clock lattice obtained from a knot diagram with two adjacent regions starred and without crossing information specified. We show that this lattice is more familiarly the graph of perfect matchings of a bipartite graph obtained from the knot diagram by overlaying the two dual Tait graphs of the knot diagram. Furthermore we prove structural properties of the bipartite graph in general. This setting also makes evident applications to Chebyshev or harmonic knots, whose related bipartite graph is the popular grid graph, and to discrete Morse functions.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献