An Ideal Software Release Policy for an Improved Software Reliability Growth Model Incorporating Imperfect Debugging with Fault Removal Efficiency and Change Point

Author:

Chatterjee Subhashis1,Shukla Ankur1

Affiliation:

1. Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India

Abstract

This paper presents a general software reliability growth model (SRGM) based on non-homogeneous Poisson process (NHPP) and optimal software release policy with cost and reliability criteria. The main motive of this study is to develop a software release time decision model considering maintenance cost and warranty cost under fuzzy environment. In previous studies, maintenance cost has been defined either in terms of warranty cost or fault debugging cost. In reality, maintenance cost includes the cost of free patches, updates, technical support and future enhancement. Also, it is possible that maintenance process causes the removal of software faults in the operational phase including the faults which occur outside the warranty period or warranty definition. In other words, warranty action may be included the maintenance action, but not the converse. Considering this fact, maintenance cost and warranty cost are defined separately in the proposed study. Initially, an SRGM has been proposed with the revised concept of imperfect debugging phenomenon considering fault removal efficiency (FRE). Furthermore, the effect of changes in various environmental factors on models parameters has been taken into account. Numerical examples based on real software failure data sets have been given to analyze the performance of the proposed models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3