SIMULATION ON THE PERFORMANCE OF CARBON DIOXIDE AND HYDROCARBON HEAT PUMPS FOR MODERATE TO HIGH TEMPERATURE HEATING

Author:

BAIK YOUNG-JIN1,KIM MINSUNG1,RA HO-SANG1

Affiliation:

1. High Efficiency and Clean Energy Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea

Abstract

In order to compare the performance of the carbon dioxide, propane and isobutane heat pumps for moderate to high temperature heating, the three heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler (or condenser) exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler (or condenser) were fixed at 40/90°C and 40/150°C. The heat source inlet temperature was fixed at 10°C. The flow rates of both the heat source and the heat sink were also fixed. The results shows that the hydrocarbon heat pumps have 11–17% higher heating COP than carbon dioxide heat pump under the simulation conditions considered in the present study. However, for a high temperature heating, even though the isobutane heat pump shows the best performance, the carbon dioxide heat pump looks promising due to hydrocarbon heat pumps' high compression ratio.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3