Affiliation:
1. High Efficiency and Clean Energy Research Division, Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea
Abstract
In order to compare the performance of the carbon dioxide, propane and isobutane heat pumps for moderate to high temperature heating, the three heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler (or condenser) exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler (or condenser) were fixed at 40/90°C and 40/150°C. The heat source inlet temperature was fixed at 10°C. The flow rates of both the heat source and the heat sink were also fixed. The results shows that the hydrocarbon heat pumps have 11–17% higher heating COP than carbon dioxide heat pump under the simulation conditions considered in the present study. However, for a high temperature heating, even though the isobutane heat pump shows the best performance, the carbon dioxide heat pump looks promising due to hydrocarbon heat pumps' high compression ratio.
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献