WAYS OF NEXT GENERATION REFRIGERANTS AND HEAT PUMP/REFRIGERATION SYSTEMS

Author:

MIYARA AKIO1,ONAKA YOJI1,KOYAMA SHIGERU2

Affiliation:

1. Graduate School of Science and Engineering, Saga University, 1, Honjo-machi, Saga-shi, Saga 840-8502, Japan

2. Faculty of Engineering Science, Kyushu University, 6-1, Kasuga-koen, Kasuga 840-8502, Japan

Abstract

Since measures of the global warming are becoming urgent issues, various technical innovations and social system reformations are being promoted. In the engineering fields of heating, refrigerating, and air-conditioning, the global warming caused by the refrigerants is a big problem that must be solved. At the present stage, however, there are no perfect solutions for next generation refrigerants and heat pump/refrigeration systems by which the global warming is successfully prevented. Therefore, we have to search possible ways to the next generation. In this paper, important four ways which are (1) natural refrigerants, (2) low GWP synthetic refrigerants, (3) refrigerant management, and (4) refrigerant mixtures are introduced. For the refrigerant mixture which are CO2 /DME and HFO-1234ze(E)/HFC-32, cycle simulations have been conducted under different operation modes. COP of the mixtures has a maximum at certain concentration and they are higher than those of conventional refrigerants. From a drop-in test of HFO-1234ze(E)/HFC-32, feasibility of the refrigerant mixture has been proved.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3